
SQL Connections

The MBS Filemaker Plugin contains functions to access SQL database
servers directly. This functions are based on SQLAPI++, a C library. You
can connect and run queries, execute SQL statements and work with
stored procedures. We support this database types: Oracle, SQL Server,
DB2, Sybase, Informix, InterBase, SQLBase, MySQL, PostgreSQL, ODBC
and SQLite

By using native APIs of target DBMS, the applications developed with
this plugin run swiftly and efficiently. The product also provides a low-
level interface that allows developers to access database-specific
features. By encapsulating a vendor's API, the plugin acts as middleware
and delivers database portability. See details on supporting SQL
database servers on different platforms:

Server Windows Mac OS X
Oracle Database
Server

Supported (OCI) Supported (OCI)

Microsoft SQL
Server

Supported (DB-
Library, OLE DB)

FreeTDS ODBC driver should be
used

Sybase Supported (Open
Client, ASE &
ASA)

Supported (Open Client, ASE &
ASA)

DB2 Supported (DB2
CLI)

Supported (DB2 CLI)

Informix Supported
(Informix CLI)

Supported (Informix CLI)

InterBase/
Firebird

Supported Supported

Centura (formerly
Gupta) SQLBase

Supported (CAPI) Supported (CAPI)

MySQL Supported
(MySQL C API)

Supported (MySQL C API)

PostgreSQL Supported (libpq) Supported (libpq)
ODBC Supported Supported (iODBC, see

www.iodbc.org)
SQLite Supported Supported

The plugin incudes the SQLAPI library. You may need database access
libraries from the database vendors.

http://www.iodbc.org/
http://www.iodbc.org/
http://www.sqlapi.com/
http://www.sqlapi.com/

For your information:
The MBS Filemaker Plugin license includes a cross-platform unlimited
license of SQLAPI++ which costs 299 USD for a C/C++ developer. Of
course this bundled license works only inside the plugin. If you want to
develop with SQLAPI in C/C++, please order a separate license from
SQLAPI.com website.

Steps to connect

In order to connect to a database, you need to create a new connection.
For this you call MBS("SQL.NewConnection"). Our examples store the
returned connection reference number in a variable called $Connection.

Once you have a connection, you can set options to define which
database client you use and what client libraries the plugin should use.
For the libraries, you normally pass file paths. Native file pathes for Mac
and Windows. For example, you can use
MBS("SQL.SetConnectionOption"; $Connection; "SQLITE.LIBS";
"/usr/lib/libsqlite3.dylib") to set client library for SQLite on Mac. Or
MBS("SQL.SetConnectionOption"; $Connection; "SQLITE.LIBS";
"c:\sqlite\sqlite3.dll") for the same on Windows. The paths are of
course different for you, so please adjust them for our example
databases or your solutions.

You can tell the plugin with Connect or SetClient function about what
database client to use. So you can call MBS("SQL.SetClient";
$Connection; "SQLite") before a connect to do other functions like
querying client library version.

Now you want to connect and call the SQL.Connect function:
MBS("SQL.Connect"; $Connection; $database; $name; $pass;
$client). Depending on what database you use, please check the server
specific guides. Normally you have a database connection string which
for SQLite is simply the path to the database file. Also you often have
credentials which you pass for optional username and password
parameters. Some databases have them inside the connection string.
Also pass the client type as last parameter if you didn't call setClient
before.

SQL Execute and Selects

Now you have a connection and you want to run commands on it. In
order to execute commands, please create a command object with
SQL.NewCommand. You can pass command here or later set it with
SQL.SetCommandText. The command string can include parameters.
This way you can avoid SQL injection attacks as your parameters are

http://www.mbsplugins.eu/SQLNewConnection.shtml
http://www.mbsplugins.eu/SQLNewConnection.shtml
http://www.mbsplugins.eu/SQLSetConnectionOption.shtml
http://www.mbsplugins.eu/SQLSetConnectionOption.shtml
http://www.mbsplugins.eu/SQLSetConnectionOption.shtml
http://www.mbsplugins.eu/SQLSetConnectionOption.shtml
http://www.mbsplugins.eu/SQLSetClient.shtml
http://www.mbsplugins.eu/SQLSetClient.shtml
http://www.mbsplugins.eu/SQLClientVersion.shtml
http://www.mbsplugins.eu/SQLClientVersion.shtml
http://www.mbsplugins.eu/SQLConnect.shtml
http://www.mbsplugins.eu/SQLConnect.shtml
http://www.mbsplugins.eu/SQLConnect.shtml
http://www.mbsplugins.eu/SQLConnect.shtml
http://www.sqlapi.com/ServerSpecific/index.html
http://www.sqlapi.com/ServerSpecific/index.html
http://www.sqlapi.com/ServerSpecific/index.html
http://www.sqlapi.com/ServerSpecific/index.html
http://www.mbsplugins.eu/SQLNewCommand.shtml
http://www.mbsplugins.eu/SQLNewCommand.shtml
http://www.mbsplugins.eu/SQLSetCommandText.shtml
http://www.mbsplugins.eu/SQLSetCommandText.shtml

probably escaped so they are not used as SQL commands by mistake.
For example with an insert command like this:
MBS("SQL.NewCommand"; $Connection; "INSERT INTO
'Test' (FirstName, LastName, Birthday, NumberOfOrders,
TotalSales) VALUES (:1,:2,:3,:4,:5)") you have 5 parameters with
IDs from 1 to 5. This way you can fill them with our set parameter
commands like SQL.SetParamAsText.

To execute the command, simply call SQL.Execute. If your call is
successful and a select command, SQL.isResultSet. In that case you can
read results.

To read results, you navigate with Fetch commands through the result
table. For example you can call SQL.FetchNext in a loop. As long as you
get result 1 from this function, you have another row in your table. With
GetField functions you can read the values. For example
MBS("SQL.GetFieldAsText"; $command; "FirstName") reads the
field named "FirstName" from the result set as text.

After you are done with your command and you don't need it again to
execute another command, you can free it from memory with
SQL.FreeCommand. Once you are done with the database connection,
please free the connection with SQL.FreeConnection.

If you change data, please don't forget to commit data with
SQL.Commit.

http://www.mbsplugins.eu/SQLSetParamAsText.shtml
http://www.mbsplugins.eu/SQLSetParamAsText.shtml
http://www.mbsplugins.eu/SQLExecute.shtml
http://www.mbsplugins.eu/SQLExecute.shtml
http://www.mbsplugins.eu/SQLisResultSet.shtml
http://www.mbsplugins.eu/SQLisResultSet.shtml
http://www.mbsplugins.eu/SQLFetchNext.shtml
http://www.mbsplugins.eu/SQLFetchNext.shtml
http://www.mbsplugins.eu/SQLGetFieldAsText.shtml
http://www.mbsplugins.eu/SQLGetFieldAsText.shtml
http://www.mbsplugins.eu/SQLFreeCommand.shtml
http://www.mbsplugins.eu/SQLFreeCommand.shtml
http://www.mbsplugins.eu/SQLFreeConnection.shtml
http://www.mbsplugins.eu/SQLFreeConnection.shtml
http://www.mbsplugins.eu/SQLCommit.shtml
http://www.mbsplugins.eu/SQLCommit.shtml

